مل و نقل و حتی در کاربردهای زیر بنایی می‌باشد [12].
یکی از ویژگی‌های بارز کامپوزیت‌ها، حضور فاز تقویـتکننده مجزا از فاز زمینه می‌باشد. ویژگی‌های اختصاصی این دو فاز، در ترکیب با یکدیگر، ویژگی‌های یکسانی را به کل کامپوزیت می‌بخشد. در یک دسته‌بندی ویژه، کامپوزیت‌ها همواره به دو فاز زمینه و تقویتکننده تقسیم می‌شوند. می‌توان گفت در واقع زمینه مانند چسبی است که تقویتکننده‌ها را به یکدیگر چسبانده و آن‌ها را از آثار محیطی حفظ می‌کند.

1-5-3 مواد زمینه کامپوزیت
زمینه با محصور کردن فاز تقویت کننده، باعث افزایش توزیع بار بر روی کامپوزیت می‌گردد. در واقع زمینه، برای اتصال ذرات تقویتکننده، انتقال بارها به تقویتکننده، تهیه یک ساختار شبکه‌ای شکل از آن‌ها و حفظ تقویتکننده از آثار محیطی ناسازگار به کار گرفته می‌شود.

1-5-4 تقویتکننده‌ها
دسته‌ای از مواد معمولی که به عنوان فاز تقویت کننده به کار گرفته می‌شوند، عبارتند از شیشه‌ها، فلزات، پلیمرها و گرانیت. تقویتکننده‌ها در شکل‌های مختلفی از جمله فیبرهای پیوسته، فیبرهای کوتاه یا ویسکرها و ذرات تولید می‌شوند (شکل3-3). تقویت کننده‌ها باعث ایجاد ویژگی‌های مطلوبی از جمله استحکام و مدول بالا، وزن کم، مقاومت محیطی مناسب، کشیدگی خوب، هزینه کم، در دسترسپذیری مناسب و سادگی ساخت کامپوزیت می‌گردند [12].

1-5-5 نانو کامپوزیت
نانو کامپوزیت‌ها مواد مرکبی هستند که ابعاد یکی از اجزای تشکیلدهنده آن‌ها در محدوده نانو‌متری باشد. نانوکامپوزیت‌ها هم، در دو فاز تشکیل می‌شود. در فاز اول، ساختار بلوری در ابعاد نانو ساخته می‌شود که زمینه کامپوزیت به شمار می‌رود. در فاز دوم هم ذراتی در مقیاس نانو به عنوان تقویت کننده برای بهبود ویژگی‌ها به فاز زمینه افزوده می‌شود. توزیع یکنواخت این فاز در ماده زمینه باعث می‌شود که فصل مشترک ماده تقویت کننده با ماده زمینه در واحد حجم، مساحت بالایی داشته باشد [13].
شکل 1-3 نمایشی از انواع مختلف تقویت کننده‌ها در کامپوزیت [12].
1-6 خلاصه
در این فصل به بیان بعضی مفاهیم اولیه پرداختهشد. خلاصه کوتاهی از فناوری نانو، نانوساختارها و روش‌های ساخت آن‌ها گفته شد. بعد از آن مواد متخلخل بررسی شد و در نهایت مختصری در مورد کامپوزیت‌ها، ویژگی‌ها و نانوکامپوزیت‌ها بیان شد.

فصل دوم
آئروژلها و مروری بر خواص مغناطیسی

2-1 تاریخچه
حوزهی پژوهشی آئروژل هر ساله به طور وسیعی افزایش می‌یابد به طوری که امروزه توجه بسیاری از دانشمندان جهان را به خود اختصاص دادهاست.
اولین بار ساموئل استفان کیستلر37 در سال 1931 با ایدهی جایگزینی فاز مایع با گاز در ژل همراه با انقباض کم، آئروژل را تولید کرد. در آن زمان سعی ایشان بر اثبات وجود شبکه‌های جامد در درون ساختار ژل بود. یک روش برای اثبات این نظریه، برداشتن فاز مایع از فاز مرطوب ژل بدون اینکه ساختار جامد از بین برود مطرح بود. برای این کار او با استفاده از یک اوتوکلاو، فاز مایع را از ژل خارجکرد که جامد باقی مانده چگالی بسیار پایینی داشت. او دما و فشار داخلی اوتوکلاو را به نقطه بحرانی مایع رساند تا بر کشش سطحی مایع غلبهکند و ساختار داخلی ژل را از فروپاشی برهاند. به این ترتیب او با موفقیت اولین آئروژل پایه سیلیکا را تولید کرد. ولی به دلیل سختی کار، برای حدود نیمقرن پژوهشی در این زمینه صورت نگرفت. اما از همان ابتدا برای دانشمندانی چون کیستلر، واضح بود که آئروژل ویژگی‌های برجسته‌ای مانند چگالی پایین و رسانایی گرمایی ناچیزی دارد [14].
در سال‌های اخیر، ساختن آئروژل به معنای رساندن الکل به فشار و دمای بخار شدنی و به طبع آن به‌دست‌آوردن نقطهی بحرانی است و باعث استخراج فوق بحرانی از ژل می‌شود. سپس، در سال 1970، دانشمند فرانسوی تایکنر38 و همکارانش برای بهبود فرآیند تولید دولت فرانسه، موفق شدند روش جدیدی به غیر از روش کیستلر برای تهیهی آئروژل کشف کنند و آن را روش سل-ژل نامیدند. در این روش آلکوکسی سیلان با سیلیکات سدیم، که به وسیله کیستلر استفاده می‌شد، جایگزین گردید. با ظهور روش ارائه شده به وسیله‌ی تایکنر پیشرفت‌های جدیدی در علم آئروژل و فناوری ساخت آن حاصل شد و پژوهش‌گران زیادی به مطالعه در این زمینه روی آوردند. به دلیل انجام مطالعات، تحقیقات و اقدامات صنعتی و نیمه صنعتی که در دهه 70 و 80 بر روی آئروژل‌ها صورت گرفت، این دوره را عصر رنسانس آئروژل نامیدند. [15].
این مواد جایگاه خود را به عنوان مواد جامدی با چگالی و رسانایی گرمایی پایین به‌دست آوردند. پایین‌ترین چگالی آئروژل تولید شده 1/0 میلیگرم بر سانتیمتر مکعب است، تا حدی که نمونه می‌تواند در هوا شناور بماند. گرچه برای ساخت جامد آئروژل مواد بسیاری می‌توانند استفاده شوند ولی آئروژل‌های 2SiO متداول‌ترند. البته می‌توان با واردکردن مواد مختلف در ساختار آئروژل در حین فرآیند ژل شدن، به بهبود ویژگی‌های نمونه‌های نتیجه شده کمک کرد [16].
آئروژل‌ها را می‌توان به عنوان یک ماده منحصر به فرد در زمینه فناوری سبز در نظر گرفت. هشدار جهانی، تهدید آیندهی محیط زیست توسط گاز‌های گلخانهای تولید شده بهدست بشر را تأیید می‌کند. آیندهی انرژی‌های قابل دسترس به خاطر کمشدن منابع نفتی و حتی افزایش تقاضا برای محصولات نفتی، در خطر است. آئروژل‌ها بارها و بارها به افزایش بازدهی برخی ماشین‌ها و سیستم‌ها و کمک به کاهش مصرف انرژی یاری رسانده‌اند. همچنین آئروژل‌ها می‌توانند آلاینده‌های آب را بیرون بکشند و با گرفتن ذرات مضر قبل از ورود به اکوسیستم، سبب تخریبنشدن محیط زیست شوند. دانشمندان دریافتند که این فناوری برای تجدید و حفاظت از انرژی به توسعهی بیشتری نیاز دارد [17].

2-2 شیمی سطح آئروژل
سیلیکا آئروژل حاوی ذرات نانومتری هستند. این ترکیبات دارای نسبت سطح به حجم بالا و مساحت سطح ویژهی زیادی هستند. شیمی سطح داخلی در آئروژل‌ها نقش اساسی را در بروز رفتار‌های بی‌نظیر فیزیکی و شیمیایی آن‌ها، ایفا می‌کند. ماهیت سطح آئروژل‌ها تا حد زیادی به شرایط تهیهی آن‌ها بستگی دارد. انتخاب فرآیند مربوط به ترکیبات شیمیایی و ویژگی‌های مورد نظر مشخص برای نانوذرات وابسته است. دو روش پایه برای تولید نانوذرات استفاده می‌شود:
روش از بالا به پایین
اشاره به خردکردن مکانیکی مواد با استفاده از فرآیند آسیابکاری دارد. در این فرآیند مواد اولیه به بلوک‌های پایهی بیشتری شکسته می‌شوند.
روش پایین به بالا
اشاره به ساخت سیستم پیچیده به وسیله ترکیب اجزای سطح اتم دارد. در این فرآیند ساختارها به وسیله فرآیندهای شیمیایی ساخته می‌شوند.
روش پایین به بالا بر پایه ویژگی‌های فیزیکی و شیمیایی اتمی یا مولکولی خود تنظیم می‌شوند. این روش به دلیل ساختار پیچیده اتم یا مولکول، کنترل بهتر اندازه و شکل آن‌ها انتخاب شد. روش پایین به بالا شامل فرآیندهای آئروسل، واکنش‌های بارش و فرآیند سل-ژل است [18].
مرحله اول ساختن آئروژل تولید ژل خیس است که بهترین روش برای ساخت آن استفاده از پیشماده الکوکسید سیلیکون، مانند TEOS است. شیمی ساخت Si(OCH2CH3)TEOS است که با اضافه کردن آب، واکنش شیمیایی زیر صورت می‌گیرد [19] :
?Si(O?CH?_2 ?CH?_3)?_(4(liq))+?2(H_2 O)?_((liq))??SiO_2?_solid+?4(HO?CH?_2 ?CH?_3)?_liq

اتم سلیکون به دلیل داشتن بار جزئی مثبت کاهشیافته (?+) نسبت به دیگر انواع آئروژل بیشتر مورد مطالعه قرار گرفت. در Si(OEt39)?+ حدود 32/0 است. این بار مثبت جزئی کاهش یافته، روند ژل شدن پیشماده سیلیکا را آهسته می‌کند.
پیشمادهی الکوکسید M(OR) هستندکه اولین بار توسط امبلن40 برای سنتز سیلیکا آئروژل استفاده شد. در این ترکیب M نشان دهندهی گروه فلزی، OR گروه الکوکسید و R تعیینکنندهی گروه الکلی هستند. الکوکسیدها معمولا در محلول منبع الکلی خود موجود هستند و امکان خشک کردن این ژل‌ها را در چنین محلول‌هایی فراهم می‌کند [20].
اگر آئروژل از طریق خشک کردن به وسیله الکل تهیه گردد، گروه‌های آلکوکسی (OR) تشکیل دهنده سطح آن است و در این سطح آئروژل خاصیت آبگریزی41 پیدا می‌کند. اگر تهیه آئروژل از طریق فرآیند دی اکسید کربن باشد آنگاه سطح آئروژل را گروه‌های هیدروکسید (OH) فرا می‌گیرد و خاصیت آب‌دوست42 پیدا خواهدکرد و مستقیما می‌تواند رطوبت هوا را جذب نماید. البته با حرارت دادن می‌توان رطوبت جذب شده را از ساختار آئروژل حذف نمود. شکل 1-2 به خوبی خاصیت آب‌دوست و آبگریزی را در ساختار آئروژل‌های با گروه‌های عاملی مختلف نشان می‌دهد [21].

شکل 2-1 برهمکنش آب و ساختار آئروژل، الف) آئروژل آبگریز، ب) آئروژل آب‌دوست [18].

2-3 تئوری فیزیکی
اتصال شبکه نانو مقیاس سیلیکای جامد آئروژل‌های پایه سیلیکا، ویژگی‌های منحصر به فردی را به آن‌ها می‌دهد. کسر یونی پیوند کووالانت قطبی برای اکسیدهای فلزی مختلف از رابطهی زیر نتیجه می‌شود:
F_ionic=1-exp?(-0.25 (X_M-X_O )^2)
که XO و XM الکترون‌خواهی O و M را نشان می‌دهد. 2SiO مقدار F_ionic 54/0 دارد که طیف مقدار زاویه Si-O-Si را گسترده کرده و شبکه تصادفی را می‌دهد. چهار اکسید دیگر زاویه یونی بزرگ‌تر و مقدار کوچک‌تر زاویه پیوند را سبب می‌شوند. به این معنی که پیوند تصادفی فقط روی ماکرومقیاس‌های بیشتر با ذرات کلوییدی بزرگ‌تر و متراکم‌تر اتفاق می‌افتد، در این صورت، ژل به جای شکلگرفتن شبکهی تصادفی اتصالات به صورت ذره تشکیل می‌شود [14]. شبکهی اتصالات سیلیکا برای وزن نسبی‌اش یک جامد محکم را ایجاد می‌کند.