ینه پایین
5) پایداری مکانیکی بالا
6) مقاومت در مقابل گرما و فشار
7) قابل استفاده بودن در محیطهای شیمیایی سخت و خشن (به شدت اسیدی یا بازی
8) غیر مخرب بودن
1-7- انواع روشهای تولید پلیمرهای قالبی
پلیمرها مولکولهای بزرگی هستند که از اتصال تعداد بسیاری مولکول بسیار کوچکتر ساخته شدهاند. مولکولهای کوچکی که مولکول پلیمر را به وجود میآورند مونومر نامیده میشود و پلیمریزاسیون یک واکنش شیمیایی است که در آن مولکولهای کوچک و ساده که اصطلاحاً تکپار نامیده میشوند، با یکدیگر پیوند برقرار کرده و مولکولی بزرگ با وزن مولکولی چندین برابر مولکول اولیه را به وجود میآورند. در یک مولکول پلیمر صدها، هزاران و دهها هزار و حتی تعداد زیادتری از مولکولها را میتوان یافت که به هم متصل شدهاند وزن مولکولی آنها ممکن است به میلیون ها برسد. برای بدست آوردن یک پلیمر با میل ترکیبی و گزینش پذیری بالا نسبت به گونه هدف انتخاب اجزای پلیمر و درصد ترکیب آنها از اهمیت بالایی برخوردار میباشد. مهمترین اجزای پلیمرهای قالب عبارتند از:
1-7-1- مولکول الگو
مولکول الگو در تمامی فرآیندهای قالب‎زنی مولکولی اهمیت اساس در جهتدهی آرایش یابی گروههای عاملی که به مونومرهای عاملی قفل میشوند، دارد. از نقطه نظر سازگاری با روش پلیمریزاسیون رادیکالی، الگو بایستی از نظر شیمیایی در شرایط پلیمریزاسیون خنثی باشد و چناچه الگو در واکنش‎های رادیکالی شرکت کند یا به هر دلیلی در شرایط پلیمریزاسیون پایدار نباشد، باید از روش‎های آلترناتیو استفاده کرد. بررسی‎های منطقی ذیل در مورد مولکول الگو باید انجام شود: (1) آیا ملکول الگو دارای گروه پلیمرشونده است؟ (2) آیا مولکول الگو دارای گروه عاملی است که بالقوه جلوی پلیمریزاسیون را گرفته یا کند کرده؟ (3) آیا مولکول الگو در برابر دمای بالا و یا نورکافت پایدار می‎ماند؟ قالب زنی مولکولهای آلی (مثل: داروها، افتکشها، اسیدهای آمینه و پپتیدها، بازهای نوکلئوتید، استروئیدها وقندها) اکنون بهخوبی تثبیت شده وتقریباً روتین است. الگوهای فعال نوری در بسیاری موارد برای بهینه کردن به کار می‎روند. در این موارد دقت ساختار قالب (حفره با سایتهای اتصالیاش) توسط قابلیت آن برای تفکیک راسمیک که میتواند به روش ناپیوسته یا با کاربرد آن پلیمر بعنوان ساپورت کروماتوگرافی سنجیده شود.
یکی از خواص دیگر روش قالب‎زنی مولکولی آنست که میتوان برای طیف گستردهای از آنالیت‎ها بهکاربرد اما همه مولکولهای الگو را نمیتوان مستقیما برای فرآیند قالب مولکولی به کار برد. غالب از مولکول‎های آلی کوچک بهعنوان الگو استفاده می‎کنند. با وجود این، روش‎های استاندارد برای ترکیبات آلی بزرگتر نظیر پروتئین‎ها، سلول‎ها، پیشنهاد شده‎اند برای ملکول‎های بزرگتر هنوز در حال تلاش‎اند. دلیل اصلی آن است که مولکول‎های بزرگتر کمتر صلب بوده و بنابرین ایجاد حفره‎های پیوندی به خوبی طراحی شده در فرایند قالب گیری را تسهیل نمی‎کنند. علاوه بر این، ساختار ثانوی و سومی بیومولکول‎های بزرگ نظیر پروتئینها وقتی که در معرض حرارت و نور شکافت حین سنتز پلیمر قالب مولکولی قرارمی‎گیرند، متـأثر میشوند. باز پیوند نیز مشکل است زیرا مولکول‎های بزرگ نظیر پپتیدها وپروتئینها براحتی برای اشغال مجدد حفره‎های گیرنده داخل شبکه پلیمری نمی‎شوند.

1-7-2- مونومر عاملی
انتخاب دقیق مونومر عاملی یک اولویت مهم برای ایجاد برهمکنش‎های مکمل با مولکول الگو و سوبستراست. در مورد قالبزنی ملکولی بهروش غیرکووالانسی، اثرات تغییر نسبت مونومر عاملی به الگو نیازی نیست زیرا الگو تعداد مونومرهای عاملی که می‎توانند پیوند یابند را تعیین می‎کنند. بعلاوه، مونومرهای عاملی به نسبت استوکیومتری اتصال می‎یابند. در مورد قالب‎زنی غیرکووالانسی نسبت بهینه مونومر/الگو از طریق ارزیابی چند پلیمر ساخته شده با فورمولاسیون‎های مختلف با افزایش مقدار الگو بدست می‎آید[22]. دلیلی که برای آن تصور می‎شود .تشکیل کمپلکس محلول بین مونومر عاملی و الگو است که تحت کنترل اصل لوشاتلیه قرار دارد.
Methacrylic acid (MAA)(HEMA)2-Hydroxy ethyl methacrylate
Trans-4-[P-(N,N-Dimethylamino)styry]-N-vinylbenzylpyridinum chloride
N,N,N-trimethylaminoethyl methacrylate
Chloride
N, O-bismethacryloyl ethanolamine

شکل (1-7) ساختار شیمایی تعدادی از مونومرهای عاملی خنثی
2-(Methacryloxy)ethyl phosphate (AMPSA)
Acrylic acid
TFMAAItaconic acid
2-(Methacryloyloxy)ethyl phosphatep-Vinylbenzoic acid
شکل (1-8) ساختار شیمایی تعدادی از مونومرهای عاملی اسیدی

4-vinylpyridine Diethylaminoethyl methacrylate

p-Aminostyrene1-Vinylimdazole4(5)-Vinylimdazole2.6-Bis-acrylaamidopyridine
شکل (1-9) ساختار شیمایی تعدادی از مونومرهای عاملی بازی
1-7-3- لیگاند
جهت افزایش میل ترکیبی و گزینشپذیری پلیمر قالب یونی و یون هدف استفاده میشود. با توجه به یون قالب شده لیگاند مورد نظر استفاده میشود. لیگاندهای مورد استفاده در این تکنیک به دو دسته تقسیم میشوند، الف) لیگاندهای که در ساختار خود پیوند دوگانه کربن-کربن دارند و قابلیت پلیمریزه شدن دارند، ب) لیگاندهای فاقد پیوند دوگانه کربن-کربن، این لیگانده دام شیکه اتصال عرضی پلیمر گیر میافتد.
1-7-4- آغازگر
بسیاری از آغازگرهای شیمیایی با خواص شیمیایی متفاوت را میتوان به عنوان منبع رادیکال‎ها در پلیمریزاسیون رادیکالی به کار برد. معمولاً به مقدار کمتری در مقایسه با مونومرها مثلاً : 1درصد وزنی یا 1درصد مولی نسبت به کل مول‎های پیوندهای دوگانه پلیمر شونده به کار برده میشود. سرعت و حالت تجزیه آغازگر به رادیکال‎ها را میتوان بهطریقی از جمله حرارت، تابش نور، وسایل الکتروشیمیایی آغاز وکنترل کرد. مثلاً، آغازگر آزوبیسایزوبوتیرونیتریل22 به نحو مناسبی از طریق نورکافت یا شکافت گرمایی رادیکالهای با مرکز کربن پایدار شده تولید میکند که قادر به آغاز کردن و گسترش تعداد مونومرهای وینیلی میباشد.
گاز اکسیژن پلیمریزاسیون رادیکالی آزاد را کند می‎کند، بنابراین به منظور به حداکثر رسانی انتشار مونومر بایستی باز تولید پیوسته را بهبود بخشید، حذف اکسیژن محلول بلافاصله قبل از شکل‎گیری توصیه می‎شود. حذف اکسیژن محلول با اولتراسونیک23 یا با عبور گاز خنثایی مانند: نیتروژن یا آرگون از محلول انجام داد.

1-7-5- مونومر اتصال دهنده عرضی
به طور کلی مونومر اتصال دهنده عرضی سه وظیفه مهم برعهده دارد، اول از همه، نقش مهمی در کنترل مورفولوژی شبکه پلیمری تولید شده دارد، که نوع ذرات پلیمری (ژل، ذرات متخلخل در ابعاد ماکرو، یا پودر میکروژل) را تعیین میکند. دومین نقش آن را میتوان ایجاد پایداری برای سایتهای پیوندی قالب شده نام برد، و در آخر، نقش آن در پایداری مکانیکی شبکه پلیمری. غلظت بالای مونومر اتصال دهنده عرضی باعث شیشهای شدن پلیمر و ایجاد شبکههای متعدد و در نتیجه انتقال جرم پایین میشود و غلظت پایین آن باعث کاهش گزینشپذیری و کاهش طول عمر پلیمر قالب یونی میشود. از نقطه نظر پلیمریزاسیون جهت دستیابی به ذراتی باتخلخل دائم، همچنین تولید ذراتی با پایداری مکانیکی بالا، نسبتهای بالایی از مونومر اتصال دهنده عرضی مصرف میشود[23].
1-8- شرایط پلیمریزاسیون
چندین تحقیق نشان داده است که پلیمریزاسیون پلیمرهای قالب ملکولی در دماهای پایین پلیمرهای با انتخابگری بیشتری نسبت به پلیمرهای که در دماهای بالاتر سنتز می‎شوند دارند. معمولاٌ بیشتر از دمای 60 درجه سانتی‎گراد به عنوان دمای پلیمریزاسیون استفاده می‎کنند اما آغاز واکنش پلیمریزاسیون خیلی سریع است به همین دلیل کنترل آن خیلی مشکل است که همین منجر به تکرارپذیری کمتر قالب‎زنی مولکولی می‎شود. به علاوه دماهای نسبتاٌ بالا یک اثر منفی بر روی پایداری کمپلکس دارد که تکرارپذیری فازهای ساکن یکپارچه را کاهش می‎دهد و در ستون‎های کروماتوگرافی باعث کاهش فشار زیاد ستون می‎شود، بنابراین دمای نسبتاٌ پایین با زمان طولانی‎تر واکنش انتخاب می‎شود تا پلیمریزاسیون تکرارپذیرتر بهدست آید. در جاهای که تشکیل کمپلکس توسط تشکیل پیوند هیدروژنی تشگیل می‎شود دماهای پایین‎تر ترجیح داده می‎شود و تحت این شرایط آغازگرهای فتوشیمیایی به خوبی جایگزین می‎شود، و به خوبی در دماهای پایین اجرا میشود. برای مثال مسباخ و همکارانش [24] تحقیقی را بر روی انتخابگری پلیمر قالب‎زنی انانتیومر 1-PheNHPh نشان دادند، یک پلیمر به طور حرارتی در دمای 60 درجه سانتی گراد وپلیمر دیگر در دمای صفر درجه سانتی‎گراد پلیمر شد. نتایج نشان دادند که پلیمری که در دمای پایین‎تر انجام شد نسبت به پلیمری که به طور حرارتی تهیه شده بود گزینشپذیرتر است. دلیل این امر بر اساس اصل لوشاتلیه که پیش بینی میکند که در دماهای پایین‎تر تشکیل کمپلکس قبل از پلیمریزاسیون بهتر پایدارتر است. بنابراین تعداد و احتمال و کیفیت سایتهای پیوندی را افزایش می‎دهد[25].
1-9- روشهای پلیمریزاسیون
روشهای پلیمریزاسیون را بصورتهای مختلفی میتوان دسته بندی نمود. بر اساس امکان تشکیل مولکول دیگری غیر از پلیمر دو دسته هستند:
1-9-1- پلیمرهای تراکمی
پلیمرهای تراکمی ترکیباتی هستند که از مونومرهای چندعاملی توسط انواع گوناگون واکنشهای تراکمی در شیمی آلی حاصل میشوند این واکنشها با حذف مولکولهای کوچکتری چون آب همراه میباشند.
1-9-2- واکنشهای پلیمریزاسیون زنجیرهای
در پلیمریزاسیونهای زنجیرهای وجود یک مرکز فعال برای شروع واکنش لازم و ضروری میباشد. به همین دلیل در این نوع واکنشها حضور شروع کننده عمدتاً ضروری است. نوع شروع کننده خصوصیات مرکز فعال را تعیین میکند. این مرکز فعا